

Hiden Analytical Ltd. 420 Europa Boulevard Warrington WA5 7UN England T +44 [0] 1925 445 225
F +44 [0] 1925 416 518
E info@hiden.co.uk
W www.HidenAnalytical.com

Symbiotic CeH_{2.73}/CeO₂ Catalyst: a Novel Hydrogen Pump

A novel symbiotic CeH_{2.73}/CeO₂ catalyst was *in situ* induced in Mg-based hydrides, leading to remarkably reduced hydrogen desorption temperatures. More importantly, we reveal a spontaneous hydrogen release effect at the CeH_{2.73}/CeO₂ interface using *in situ* High-Resolution Transmission Electron Microscope (HRTEM) and *ab-initio* calculations.

Using additives/catalysts to destabilize hydrides of high hydrogen storage density, e.g. MgH₂ with 7.6 wt.%-H and desorption temperature as high as 300-400 °C, is one of the most important strategies to overcome the hurdle of applying hydrogen storage materials in technologies related to hydrogen energy. Despite tremendous efforts, the development of additives/catalysts with high catalytic activity and easy doping remains a great challenge. In this work, we report a simple method to induce a novel symbiotic CeH_{2.73}/CeO₂ catalyst in Mg-based hydrides, which is capable of being mass produced. The first step is to hydrogenate the amorphous Mg-Ce-Ni alloy to get a multiphase composite of MgH₂, Mg₂NiH₄ and CeH_{2.73}, and the second step is to oxidize the hydrogenated sample to generate CeO₂ from CeH_{2.73}. Moreover, we reveal a spontaneous hydrogen release effect at the CeH_{2.73}/CeO₂ interface, which leads to a dramatic increase of catalytic activity compared with either the CeH_{2.73} or CeO₂ catalyst alone. TPD-MS analysis was performed on a **Hiden QIC-20** mass spectrometer (Figure 1a). With the increase of the CeH_{2.73} to CeO₂ ratio, the hydrogen desorption temperature decreases at first and then increases after reaching the trough at the molar ratio of 1:1. The catalytic activity of the symbiotic CeH_{2.73}/CeO₂ might have a close relationship with their interface density, which reaches the maximum when molar ratio of CeH_{2.73} to CeO₂ is 1:1, however, the mechanism is not well understood. The lowest dehydrogenation onset temperature is only ~210 °C in the presence of the symbiotic CeH_{2.73}/CeO₂, which is ~210 °C lower than that of conventional MgH₂.

The dynamic boundary evolution during hydrogen desorption was observed in the symbiotic CeH_{2.73}/CeO₂ at atomic resolution using *in situ* High-Resolution Transmission Electron Microscope (HRTEM) Figure 1 (b)).

Figure 1. (a) DSC and TPD-MS curves of the symbiotic CeH_{2.73}/CeO₂ doped MgH₂, heating rate of 2 K/min. (b) In situ HRTEM images of the dehydrogenation process, boundary between CeH_{2.73} and CeO₂ is roughly drawn with a dash line at the beginning of hydrogen desorption

Ref: AP0918

Product: QGA

Page 1

The boundary region suffers severe distortions and the distorted areas fluctuates wavelike during hydrogen desorption, suggesting that the interface region of the symbiotic nanocrystals undergo structural evolution at the atomic scale, which presumably plays a prominent role for the release of hydrogen in dehydrogenation. Combining the *ab-initio* calculations, which show significant reduction of the formation energy of hydrogen vacancy in the CeH_{2.73}/CeO₂ boundary region in comparison to those in the bulk MgH₂ and CeH_{2.73}, we demonstrate that the outstanding catalytic activity can be attributed to the spontaneous hydrogen release effect at the CeH_{2.73}/CeO₂ interface.

Project summary by:

School of Materials Science and Engineering South China University of Technology Guangzhou 510640 P R China

Paper Reference:

Huai-Jun Lin, *et al.*(2014) "Symbiotic CeH_{2.73}/CeO₂ catalyst: A novel hydrogen pump" *Nano Energy* **9**, 80-87

Hiden Product:

QGA Atmospheric Gas Analysis System (was QIC-20)

